Строительный портал - Kraska-yug

Материаловедение конспект лекций. Перлит в эвтектоидной стали Что такое перлит в материаловедении

Изучение микроструктуры и свойств углеродистых сталей

Цель: изучить превращения в сплавах системы железо-цементит и структуры сталей различного состава в равновесном состоянии. Определить содержание углерода в исследуемых сталях и их марки.
Микроструктуру сталей изучают в равновесном состоянии, т. е. в таком состоянии, когда процессы фазовых превращений полностью произошли, что достигается только при очень медленном охлаждении. Структурные составляющие железоуглеродистых сплавов в равновесном состоянии определяют по диаграмме состояния железо-цементит. Особенность диаграммы - наличие на оси составов двух шкал, показывающих содержание углерода и цементита (рис. 1.).
Железоуглеродистые сплавы, содержащие углерода менее 2,14 %, называются сталями , а более 2,14 % - чугунами .
Структура стали в равновесном состоянии зависит от содержания в ней углерода. После полного отжига в углеродистой стали присутствуют следующие фазы и структурные составляющие: феррит, цементит, перлит.
Феррит (Ф) - твердый раствор углерода в α-железе. Он является продуктом диффузионного превращения аустенита при его охлаждении ниже температур линии GPSK (см. рис. 1).
Под микроскопом феррит наблюдается в виде светлых зерен неодинаковой яркости (рис. 2). Последнее объясняется неодинаковой травимостью вследствие анизотропии свойств феррита. Растворимость углерода в феррите изменяется с изменением температуры, что отражается на диаграмме состояния (рис. 1) - линия GPQ . Максимальное содержание углерода в феррите при комнатной температуре достигает 0,006 %.
Феррит является пластичной фазой. Его относительное удлинение δ=50 % и твердость зависит от концентрации углерода и других растворенных примесей и изменяется в пределах НВ 450÷800.
Феррит обладает ферромагнитными свойствами, в парамагнитное состояние переходит при температуре 768°С.
Цементит (Ц) - химическое соединение углерода с железом - карбид железа Fe 3 C. Кристаллическая решетка цементита сложная ромбическая. Цементит обладает металлическим блеском, тепло- и электропроводностью, малыми магнитными свойствами до температуры 210°С. Температура плавления при атмосферном давлении у цементита не установлена, так как он является неустойчивым химическим соединением и при высоких температурах распадается на железо и углерод. В зависимости от условий охлаждения аустенита цементит может иметь зернистую или пластинчатую форму, Цементитная сетка из пластинок, охватывающих зерна перлита в структуре заэвтектоидной стали, снижает ее пластичность и прочность , а увеличивает твердость . Цементит - самая твердая составляющая, НВ 8000. Его пластичность практически равна нулю. Поэтому с возрастанием количества цементита в стали при увеличении концентрации в ней углерода твердость стали возрастает, а пластичность падает.

Рис. 1 – Диаграмма состояния сплавов системы железо–углерод

Перлит (П) - эвтектоидная смесь из кристаллов цементита м феррита, образующаяся при диффузионном распаде аустенита в результате медленного охлаждения последнего. Содержание углерода в перлите 0,8 % (точка S , рис. 1). При изготовлении шлифа пластинки цементита, более твердого, чем феррит, сошлифовываются меньше и поэтому выступают из остальной массы перлита. Феррит как мягкая составляющая сошлифовывается больше, что усиливается при травлении. Поэтому при косом освещении перлит под микроскопом просматривается в виде темных и светлых полосок.
В зависимости от формы цементита различают:
а) зернистый перлит, в котором цементит имеет форму зерен, расположенных в феррите (рис. 3. а);
б) пластинчатый перлит, в котором цементит и феррит имеют форму пластин; последние образуют смесь чередующихся пласгпш цементита (рис. 3, б) и феррита.
Форма и размер цементитных частиц в перлите существенно влияют на свойства стали. Так, например, зернистый перлит более пластичен и имеет меньшую твердость, чем пластинчатый. С уменьшением размера цементитных частиц твердость и прочность перлита возрастают.


Рис.2 - Схема зарисовки структуры феррита (техническое железо)


Рис.3 - Схема зарисовки структуры перлита а -зернистый перлит; б - пластинчатый перлит (эвтектоидная сталь)

Обыкновенный пластинчатый перлит имеет предел прочности σ b =820 МПа и относительное удлинение δ 5 =15 %, а крупнопластинчатый σ b =550 МПа и δ 5 =5%. Зернистый перлит имеет σ b =630 МПа и δ 5 =20 %.
Твердость пластинчатого перлита НВ 2000÷2500, а зернистого - НВ 1600÷2200.
На микрошлифе в обычном оптическом микроскопе при малом увеличении (до 200 крат) перлит наблюдается в виде темных зерен, в которых не видно ни пластин, ни зерен цементита, так как размер цементитных частиц очень мал.

Структура стали в равновесном состояния зависит от содержания в ней углерода.
Техническое железо содержит не более 0,02 % углерода и может быть двухфазным или однофазным сплавом.
Технически чистое железо называют армко-железом. Его получают в больших количествах промышленным способом с суммарным содержанием примесей около 0,15 %.
Сплавы с содержанием углерода до 0,006 % состоят из феррита, а в интервале концентраций 0,006-0,02 % - из феррита и цементита третичного, который выделяется по границам ферритных зерен вследствие изменения растворимости углерода в феррите при понижении температуры (см. рис. 1).
Доэвтектоидные стали содержат от 0,02 до 0,8 % углерода. Стали состоят из феррита (светлые зерна) и перлита (темные зерна) (рис. 3, а). Количество перлита увеличивается, а феррита уменьшается пропорционально увеличению содержания углерода. По соотношению площадей, занимаемых в исследуемой структуре перлитом и ферритом, что с определенной степенью точности соответствует соотношению их объемов, можно определить содержание углерода в стали. Для того чтобы подсчитать содержание углерода в доэвтектоидной стали, необходимо определить площадь занимаемую перлитом на микрошлифе относительно всего поля зрения, и умножить на содержание углерода в перлите (0,8 % - см. рис. 1).
Пример: площадь, занятая перлитом f Ц = 0,6 (относительно 1). Тогда содержание углерода в данном образце будет: 0,8×0,6 = 0,48 %.
Зная процентное содержание углерода, можно определить марку стали.
Эвтектоидная сталь содержит 0,8 % углерода, в ее структуру входит только перлит (см. рис. 4)


Рис.4 - Схемы зарисовки структуры стали а -доэвтектоидной; б - заэвтектоидной

Заэвтектоидные стали содержат углерода более 0,8 %. Они состоят из перлита и цементита вторичного, который расположен обычно в виде светлой сетки или светлых вытянутых зерен (цепочки) по границам зерен перлита (рис. 4, б).
Содержание цементита вторичного в структуре заэвтектоидной стали возрастает с увеличением концентрации углерода. Если известно относительное содержание вторичного цементита на микрошлифе, можно определить содержание углерода в данном образце. Для этого к углероду, содержащемуся в перлите, нужно добавить углерод, содержащийся во вторичном цементите. Например, площадь, занятая вторичным цементитом f ЦII = 0,04 (относительно 1), тогда площадь занятая перлитом f П = 0,96 относительной площади микрошлифа.Содержание углерода определяют следующим образом.

0,04×6,67 + 0,96×0,8 % =1,1 %

Химический состав и маркировка сталей приведены в табл. 1.2, 1.3, 1.4.
Влияние углерода на свойства стали в основном определяются свойствами цементита и связано с изменением содержания основных структурных составляющих - феррита и цементита. При увеличении углерода до 1,2 % (рис. 5) возрастают

С содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной и образующейся фазе процесс распада носит диффузионный характер.

Рис.33. Схема превращения аустенита в перлит

Рассмотрим превращения переохлажденного аустенита эвтектоидной стали (0,8%С). Образцы нагревают до t ≈ 770ОС, при которой ее структура состоит из однородного аустенита. Затем образцы быстро переносят в термостаты с заданной температурой - ниже А 1 (интервал между изотермами 25-30ОС), и в процессе изотермической выдержки наблюдают за происходящими в аустените превращениями.

Процесс превращения аустенита в перлит можно изобразить в виде кинетической кривой превращения в координатах степень превращения - время (рис.34).

В точке а обнаруживается начало превращения. В точке b - превращение заканчивается. Отрезок до точки а - инкубационный период. Отрезок до точки b - время превращения. Максимум скорости превращения соответствует примерно тому времени, когда превратилось ≈ 50% аустенита.

При высокой температуре (малая степень переохлаждения) превращение развивается медленно - продолжительность инкубационного периода и время превращения велики. При увеличении степени переохлаждения (снижении температуры превращения) скорость превращения возрастает. Максимум скорости превращения соответствует температуре t3. Дальнейшее снижение температуры приведет уже к уменьшению скорости превращения.

Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 -550 0 С.

Рис.34. Кинетика превращения аустенита в перлит

На рис.34а показана серия кинетических кривых, относящихся к разным температурам (разным степеням переохлаждения).

По полученным данным строят диаграмму изотермического превращения переохлажденного аустенита в координатах «температура - логарифм времени»

Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стали . Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-550 0 C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А 1 (550 0 С), бейнитную область (в интервале t 550 - М н), и мартенситную область при температуре переохлаждения ниже линии М н.

С увеличением степени переохлаждения (т.е. чем ниже температура изотермической выдержки) растет число зародышей новых зерен, число феррито-цементитных пластинок увеличивается, а их размеры и расстояния между ними сильно сокращаются. Таким образом, дисперсность образующихся фаз растет.


Перлит, сорбит, троостит представляют собой механические смеси феррита и цементита. Они различаются только по степени дисперсности. При этом повышается их твердость.

При медленном охлаждении со скоростью V 1 (вместе с печью) образуется сравнительно грубая пластинчатая смесь - обычный перлит. Твердость по Роквеллу HRC =10; σ в = 600 МПа.

При охлаждении на воздухе со скоростью V 2 образуется сорбит , который отличается от перлита более тонкодисперсным строением HRC =20; σ в = 850 МПа.

При охлаждении в масле со скоростью V 3 образуется еще более высокодисперсный троостит, HRC =30; σ в = 1100 МПа.

Лучшую пластичность и вязкость, а вместе с тем и прочность, имеет структура сорбита. Стали с сорбитной структурой более износостойкие. Они используются для изготовления нагруженных изделий.

Стали со структурой троостита обладают значительной упругостью и используются для изготовления пружин, рессор.

Превращение аустенита в мартенсит

При переохлаждении до температуры 200 0 С скорость диффузии атомов железа и углерода практически равна нулю, следовательно, при этой температуре скорость превращения переохлажденного аустенита в перлит также равна нулю.

При охлаждении образцов со скоростью выше критической при температуре 240° (линия MН) начинается γ → α превращение. Так как при этих температурах скорость диффузии мала, превращение носит без диффузионный характер и весь углерод, растворенный в решетке аустенита, остается в решетке феррита. В результате образуется пересыщенный твердый раствор внедрения углерода в α-железе - мартенсит . Атомы углерода располагаются на ребре куба элементарной ячейки. При этом ОЦК-решетка сильно искажается, превращаясь из кубической в тетрагональную (рис.35).

Рис.35. Тетрагональная кристаллическая ячейка

Наименьшая скорость охлаждения, необходимая для образования структуры мартенсита называется критической скоростью закалки - V кр.

Отношение c/a - называется степенью тетрагональности, (c/a¹1).

Мартенсит образуется при резком переохлаждении аустенита ниже температуры начала мартенситного превращения практически мгновенно. Кристаллы имеют форму пластин, в плоскости шлифа под микроскопом структура мартенсита выглядит как отдельные иглы, ориентированные под определенными углами друг к другу (рис.36).

Рис.36. Схема образования мартенсита

Твердость мартенсита зависит от содержания углерода, и максимально составляет величину порядка 60-65 HRC.

Твердость стали, зависит от скорости охлаждения из аустенитной области, определяющей тип структуры. Если проводить охлаждение с малой скоростью, то аустенит будет распадаться на феррито-цементитную смесь пластинчатого строения, которая называется перлитной. С увеличение скорости охлаждения происходит распад аустенита с образованием более дисперсных выделений феррита и цементита так же пластинчатого строения- сорбит с твердостью 250-300НВ и тростит, с твердостью 300-400НВ (рис.38).

Если аустенит переохлаждать до температуры начала мартенситного превращения то, никакого распада на ферито-цементитную смесь не происходит. Аустенит по бездифузионному механизму превращается в мартенсит. Скорость охлаждения касательная к перегибу с-образной кривой называется критической скоростью закалки. Это минимальная скорость охлаждения, при которой аустенит переохлаждается без распада до начала мартенситного превращения. Следовательно, при закалке сплавы необходимо охлаждать со скоростью выше критической.

Рис.37.Диаграмма изотермического распада аустенита

Прямая является границей между верхней и нижней частями диаграммы. Эта прямая характеризует начало мартенситного превращения аустенита

Нижняя часть диаграммы показывает, что для перевода всего остаточного аустенита в мартенсит необходимо понижать температуру стали до линии (конец мартенситного превращения).

Положение точек Mн и Mк зависит от содержания в стали углерода и присутствия легирующих элементов. Оно не зависит от скорости охлаждения. Поэтому на С-образной диаграмме эти линии горизонтальные.

Все легирующие элементы, кроме кобальта, увеличивают устойчивость переохлажденного аустенита. По этому С-образные кривые сдвигаются вправо, в сторону больших времен выдержки. Вместе с тем снижается критическая скорость закалки.

Температурный интервал Mн - Mк (мартенситное превращение) снижается вплоть до отрицательных температур. То же самое наблюдается в присутствии большого количества углерода. При содержании углерода свыше 0,6% Mк находится в области отрицательных температур (рис.38). Например, превращение всего аустенита в мартенсит для эвтектоидной углеродистой стали наступит лишь при температуре -50°.

Рис.38. Влияние содержания углерода на температуру начала и конца мартенситного превращения

Малейшая изотермическая выдержка в интервале температур Mн - Mк приводит к стабилизации аустенита, то есть превращение не доходит до конца, и кроме мартенсита в структуре наблюдается т.н. остаточный аустенит.

Мартенсит - очень твердая и хрупкая структура. Свойства зависят от количества углерода: HRC =55-65, σ в = 1600 -2200 МПа.

В интервале температур между перлитным и мартенситным превращениями происходит промежуточное превращение - бейнитное . В отличие от перлитного превращения, протекающего по диффузионному механизму, бейнитное превращение протекает как по диффузионному, так и по бездиффузионному (мартенситному) механизму. Поэтому бейнитное превращение иначе называют промежуточным. При таких степенях переохлаждения диффузия атомов возможна, а диффузия атомов железа практически проходить не может. Результатом распада аустенита в бейнитной области является структура бейнита - пересыщенного углеродом феррита, имеющего игольчатое строение. Поэтому бейнит иначе называют игольчатый тростит.

В отличие от перлитных структур в бейните повышенное содержание углерода, т.к. при этих температурах диффузионные процессы сильно замедляются, и перераспределение углерода не происходит в полной мере. Различают верхний и нижний бейнит. Верхний бейнит имеет так называемую перистую структуру близкую к троститной, образующейся при переохлаждении несколько ниже перегиба С-образной кривой. Нижний бейнит имеет игольчатое строение близкое к мартенситу. Он образуется при температуре на 50-100 о С выше Mн обладает благоприятным сочетанием свойств прочности (σ в = 1350 МПа), твердости (HRC =40) и пластичности.


Структура заэвтектоидной стали


Структура чугунов

Цель работы : изучить микроструктуру чугунов.

Задачи :

1. Изучить структуру белых чугунов;

2. Определить долю цементита в составе ледебурита;

3. Изучить структуру графитизированных чугунов, оценить визуально при одинаковом увеличении соотношение длины и радиуса «заострения» у графитовых включений в различных чугунах;

4. Определить вид чугуна и указать технологию создания наблюдаемой структуры;

5. Определить особенности дефектной структуры и указать возможные способы её устранения.

Оборудование и материалы:

Микроскоп металлографический;

Микрошлифы чугунов.

Введение

Чугуны представляют сплавы железа и углерода и отличаются от сталей более высоким содержанием углерода.

Чугунами называют сплавы железа с углеродом, в которых может содержаться от 2,14 (точка Е на диаграмме железо – углерод) до 6,67 % С (при такой концентрации образуется карбид железа – цементит). В чугунах при первичной кристаллизации возможно протекание эвтектической реакции при температуре 1147 о С. Поэтому чугуны обладают хорошей жидкотекучестью и используются как литейный материал.

Классификация чугунов

Чугуны можно классифицировать по различным признакам:

По состоянию углерода;

По наличию легирующих элементов и другим.

Углерод в чугунах может находиться как в свободном состоянии – в виде графита, так и в связанном – в виде цементита. Выделение углерода в виде графита называют графитизацией. По состоянию углерода чугуны делят на белые и графитизированные.

В белых чугунах углерод находится в связанном состоянии – в виде

цементита Fe 3 C. Наличие большого количества цементита и отсутствие выделений графита делают излом таких чугунов светлым как у стали, поэтому они и получили название белые. Структура эвтектического белого чугуна состоит из эвтектики, называемой в честь немецкого учёного Ледебура ледебуритом. Ледебурит в момент образования представляет гетерогенную смесь аустенита и цементита, в которой цементит является матричной фазой. При охлаждении ниже температуры эвтектоидного превращения аустенит преобразуется в перлит. Таким образом, при комнатной температуре ледебурит представляет смесь колоний перлита и цементита. Под микроскопом он выглядит в виде множества тёмных пятен перлита на светлом фоне цементита.

В структуре доэвтектического белого чугуна кроме ледебурита присутствуют весьма крупные колонии перлита, образовавшиеся на месте кристаллов аустенита, выделение которых предшествовало эвтектической реакции. В расположении этих крупных перлитных колоний можно заметить некоторую закономерность, свидетельствующую о дендритном строении первичных кристаллов аустенита.

Рисунок 1 – Схемы структур белых чугунов

Рисунок 2 - Микроструктура доэвтектического белого чугуна

В отличие от доэвтектического в заэвтектическом белом чугуне на фоне ледебурита наблюдаются крупные светлые кристаллиты цементита первичного, имеющие обычно игольчатую форму.

Темные участки- это перлит. Светлый фон – цементит. Крупные колонии перлита окружены цементитом вторичным, который выделился из зёрен аустенита в процессе охлаждения в интервале от 1147 о С до 727 о С. Закономерное расположение этих перлитных колоний указывает на дендритное строение кристаллитов аустенита, выделившихся из жидкой фазы при первичной кристаллизации чугуна.

Белые чугуны из-за большого количества твёрдой и хрупкой фазы – цементита тверды и хрупки, очень трудно обрабатываются резанием. Поэтому они для изготовления деталей машин почти не применяются.

Обычно детали машин делают из графитизированных чугунов, в которых углерода в связанном состоянии (в виде цементита) не более 0,8%.

Остальное количество углерода в графитизированных чугунах присутствует в свободном виде – в виде кристаллитов графита. При разрушении чугуна свободный углерод обнажается в изломах и придаёт им серую матовую окраску, устраняет металлический блеск. Поэтому графитизированные чугуны получили название – серые.

Кристаллиты графита в графитизированных чугунах могут иметь различную геометрическую форму: пластинчатую, хлопьевидную, вермикулярную и шаровидную. Металлическая основа чугунов тоже бывает различной: перлитной, перлитно-ферритной и ферритной.

Структура металлической основы, форма выделений графита, его количество размеры и расположение оказывают большое влияние на свойства чугуна. С увеличением доли перлита в металлической основе возрастают твердость, износостойкость, прочность, снижается пластичность.

Формой графита в большей степени определяются показатели пластичности. Схемы различных структур графитизированных чугунов представлены на рисунке 3.

Металлическая основа Форма графитных включений
Пластинчатая Вермикулярная Хлопьевидная Шаровидная
Феррит твердость
Феррит + перлит
Перлит
направление возрастания пластичности

Рисунок 3 - Схемы структур графитизированных чугунов

Для деталей машин используют обычно доэвтектические графитизированные чугуны, в которых количество углерода в виде карбида Fe 3 C (цементита) находится не более 0,8%. Остальное количество углерода в них находится в виде свободного графита. Свободный углерод обнажается в изломах и придает им серую матовую окраску, поэтому такие чугуны называют серыми.

Формирование структуры чугуна существенно зависит от химического состава и скорости охлаждения.

Для образования зародышей цементита требуется меньше энергии, чем для образования зародышей графита. Поэтому в обычных условиях, несмотря на то, что графит является более устойчивой фазой, чем цементит, при первичной кристаллизации из жидкого чугуна выделяется эвтектика ледебуритная (смесь аустенита с цементитом), а не графитная (аустенит +графит).

Технические чугуны в своем составе кроме железа и углерода содержит 1-2% кремния, а так же марганец, серу и фосфор. Наличие кремния и снижение скорости охлаждения облегчают процесс графитизации.

Металлическая основа графитизированных чугунов после эвтектоидного превращения состоит из феррита и перлита в разных пропорциях и может быть перлитной, ферритно–перлитной, или только ферритной (рисунок 3).

Графит хрупок и непрочен и, присутствуя в чугуне, ослабляет его металлическую основу. Его включения можно рассматривать как пустоты, вблизи которых в металлической основе под нагрузкой происходит концентрация напряжений. Эта концентрация определяется геометрической формой дефектов – графитовых включений и может быть количественно оценена коэффициентом концентрации напряжений

l – длина дефекта (наибольший размер);

r – радиус закругления в вершине дефекта.

Кристаллы графита в чугунах могут иметь, в зависимость от условий образования, пластинчатую, хлопьевидную, вермикулярную и шаровидную форму. Форма выделений графита, его количество, размеры и расположение, а также строение металлической основы оказывают большое влияние на свойства чугунов. Показатели прочности, твердость, износостойкость возрастают с увеличением доли перлита в металлической основе, а показатели пластичности определяются главным образом формой графитовых включений.

По форме графитовых кристаллитов чугуны разделяются на серые, ковкие, высокопрочные и чугуны с вермикулярным графитом. В обычных серых чугунах графит выделяется при первичной кристаллизации отливок при их медленном охлаждении. Выделения графита вырастают в окружении жидкой фазы и приобретают форму искривленных пластинок. На фотографии структуры они выглядят в виде длинных криволинейных темных полос.

Пластинчатые выделения ослабляют чугун в наибольшей степени. Чугун с такими выделениями даже при пластичной ферритной основе разрушается хрупко. Относительное удлинение после разрушения около 0,5%. Особенно ослабленным оказывается чугун, в котором выделения

графита образуют замкнутый скелет. Серые чугуны технологичнее и дешевле сталей, поэтому широко используются для изготовления многих деталей, особенно для испытывающих при эксплуатации сжимающие нагрузки.

Ковкий чугун получают путем длительного отжига отливок со структурой белого чугуна. При отжиге цементит Fe 3 C разлагается на Fe и C и выделяющийся графит приобретает компактную хлопьевидную форму. Чугун с таким графитом проявляет пластичность (относительное удлинение от 2 до 12%) и применяется для тонкостенных деталей подвергаемых даже динамическим нагрузкам.

Еще компактней выделения графита в высокопрочных чугунах, в которых, используя модифицирование церием или магнием, удается получить непосредственно при первичной кристаллизации шарообразные кристаллиты графита. Высокопрочный чугун широко используется взамен литых стальных заготовок, особенно для деталей сложной конфигурации.

Половинчатые чугуны. Половинчатыми называют графитизированные чугуны, в которых наряду с графитом присутствуют признаки ледебурита или цементита вторичного, рисунок 4. В этом случае количество углероды в связанном состоянии превышает 0,8%.

Рисунок 4 - Чугун половинчатый

(На светло-сером фоне металлической основы черные выделения глобулярного графита и светлые продолговатые кристаллиты цементита. Шлиф не травлен)

Половинчатые чугуны более твердые и износостойкие, но и более хрупкие, чем перлитные серые. Они трудно обрабатываются лезвийным инструментом и применяются лишь в особых случаях. Чаще половинчатость расценивается как литейный брак.

В технических чугунах с повышенным содержанием фосфора может наблюдаться фосфидная эвтектика Fe 3 P-Fe, располагающаяся обычно в виде небольших островков между колониями перлита. Фосфидная эвтектика улучшает жидкотекучесть чугуна и повышает его износостойкость.

Чугун с вермикулярным графитом, получают благодаря регламентированному модифицированию силикокалицием, церием, магнием или магнийцериевой и другими лигатурами. В результате выделения графита приобретают червеобразную (вермикулярную) форму. Вермикулярный графит отличается от пластинчатого меньшей степенью неравномерности, меньшими размерами и округлой формой кромок.

По механическим свойствам он занимает промежуточное положение между серым и высокопрочным.

Специальные чугуны. Для придания чугунным деталям более высоких механических свойств используют чугуны, легированные хромом, никелем, ванадием и другими элементами. Легирование в сочетании с термической обработкой расширяет рамки изменения структуры и свойств чугунов и области применения этих технологичных сплавов.

Порядок проведения работы:

1. Изобразить график охлаждения доэвтектического белого чугуна и объяснить все процессы, происходящие в нем при первичной кристаллизации, происходящие в нем при первичной кристаллизации и при дальнейшем охлаждении до комнатной температуры.

2. Изучить под микроскопом и зарисовать микроструктуру белых чугунов.

3. Расшифровать фазы и структурные составляющие в наблюдаемых чугунах.

4. Изучить микроструктуру графитизированных чугунов, зарисовать и расшифровать её.

5. На основании анализа структуры дать полное название зарисованным чугунам.

6. Оценить в графитизированных чугунах возможную концентрацию механических напряжений вблизи графитовых выделений.

  1. Сделать выводы о свойствах и областях применения изученных чугунов.

Контрольные вопросы:

1. Какие структурные отличия разделяют, стали и чугуны?

2. Что общего в структурах отожженных сталей и чугунов?

3. Какие характеристики графита оказывают влияние на свойства чугунов?

4. В чем заключается отрицательное влияние графита на свойства чугунов?

5. Какое положительное влияние на свойства чугунов оказывает графит?

6. Какие факторы способствуют повышению износостойкости чугунов?

7. С какой целью проводят модифицирование чугунов?


1.Общие теоретические положения.

2.График охлаждения белого чугуна.

3.Рисунки структур изученных чугунов.

4.Выводы о свойствах и применении изученных чугунов.

Литература

1 Лахтин Ю.М., Леонтьева В.П. Материаловедение. - М.: Машиностроение, 1990. – 528с.

1. Фетистов Г.П. и др. Материаловедение и технология металлов. – М.: Высшая школа, 2000. – 638с.

2. Гуляев А.П. Металловедение. - М.: Металлургия, 1986. – 544с.

Методические указания к проведению лабораторных работ по дисциплине «Материаловедение» для студентов всех специальностей очной и заочной форм обучения

Составители: ст. преподаватель Прожерин А.Е.

доцент, к.т.н., доцент Теплоухов О.Ю.

Подписано к печати Бум. писч. № 1

Заказ № Уч. – изд. л.

Формат 60/90 1/16 Усл. печ. л.

Отпечатано на RISO GR 3750 Тираж_________экз.

; название предложено Хоу и связано с перламутровым блеском (перлит напоминает перламутр). Перлит представляет собой эвтектоидную смесь двух фаз – феррита и цементита (в легированных сталях – карбидов). Перлит – продукт эвтектоидного распада аустенита при медленном охлаждении Fe-C-сплавов ниже 723°C. Аустенит (γ-железо) переходит в α-железо, в котором около 0,02% углерода; избыточный углерод выделяется в форме цементита или карбидов.

Структура перлита

В зависимости от формы различают пластинчатый и зернистый перлит . Структура пластинчатого перлита представлена на первом рисунке, структура зернистого перлита - на втором рисунке.

Дисперсные разновидности перлита иногда называют сорбитом и трооститом .

Таким образом, перлит , сорбит и троостит - это структуры с одинаковой природой (феррит + цементит), продукты распада аустенита, отличающиеся степенью дисперсности феррита и цементита .

Зернистый перлит и пластинчатый перлит

Перлитные структуры могут быть двух типов: пластинчатые и зернистые. В зернистом перлите цементит находится в виде зёрнышек. В пластинчатом перлите цементит находится в виде пластинок (см. рисунок).

ИЦМ(www.сайт)

Однородный (гомогенный) аустенит всегда превращается в пластинчатый перлит . Нагрев до высокой температуры, когда создаются условия для образования более однородной структуры, способствует появлению пластинчатых структур. Неоднородный аустенит при всех степенях переохлаждения даёт зернистый перлит . Нагрев до невысокой температуры приводит к образованию зернистого перлита (для заэвтектоидной стали ниже А С3 ; критическая точка А С3 - конец растворения вторичного цементита в аустените). Вероятно, образованию зернистого цементита способствуют оставшиеся не растворёнными в аустените частицы, являющиеся дополнительными центрами кристаллизации.

При исходном нагреве стали до 900°C получился пластинчатый перлит, причём более низкая температура даёт более дисперсную структуру. В такой же стали при тех же температурах превращения, но после невысокого нагрева (780°), получился зернистый перлит .

Размер цементитных зёрен в перлите зависит от температуры превращения аустенита, а форма цементита в перлите зависит от температуры нагрева (или температуры аустенизации ).

Свойства перлита

Свойства перлита зависят от типа, размера и формы цементитных зёрен, от расстояния между пластинами, а также от других факторов. Предел прочности пластинчатого перлита 80 кг/мм, относительное удлинение 10-12%. Прочность и твердость зернистого перлита несколько меньше, зато выше пластические свойства. Благодаря α-железу перлит обладает магнитными свойствами.

Твёрдость перлита

Значения твёрдости перлита , в зависимости от структуры и степени дисперсности могут меняться от При более дисперсном строении перлита твёрдость его повышается. Зависимость твёрдости от межпластинчатого расстояния (S) различных перлитных структур представлена в таблице :

Значения твёрдости перлита из различных источников: твёрдость пластинчатого перлита 180-230 HB, твёрдость зернистого перлита 160-190 HB.

Перлит вспученный

Перлитом также называется кислое вулканическое стекло с мелкой структурой, по которой оно раскалывается на мелкие шарики, имеющие иногда жемчужный блеск. Состав такого вспученного перлита, %: SiO 2 65-75; Al 2 O 3 10-15; Fe 2 O 3 1,5-2,5; CaO 1,5-2,5; MgO 1,5-2,0. Перлит вспученный содержит до 3-6% конституционной (связанной) воды. При быстром нагревании содержащаяся в этом перлите вода испаряется, вспучивая породу с увеличением объёма до 10-20 раз. Температура вспучивания 850-1200°C. Вспученный перлит имеет объёмную массу 70-600 кг/м 3 , что позволяет использовать его в качестве лёгкого заполнителя в теплоизоляционных изделиях.

Перлит вспученный находит применение прежде всего в строительстве: при изготовлении эффективной штукатурки, кирпича и блоков из искусственного перлитового камня (преимуществами которого являются малый вес и лёгкость обработки), в качестве звукоизоляционного наполнителя, утеплителя и т.д. Кроме того вспученный перлит применяют в сельском хозяйстве и не только.

Лит.:

  1. Гуляев А.П. Металловедение. - М.: Металлургия, 1977. - УДК669.0(075.8)
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  3. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.

ПЕРЛИТ – структурная составляющая в углеродистых и легированных сталях и чугунах, возникающая при эвтектоидном превращении (см МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ) согласно диаграмме состояния железо – углерод . Перлит состоит из двух фаз – феррита и цементита , феррит – железо с очень малым количеством углерода (до 0,03%), а цементит – химическое соединение Fe 3 C, содержащее по массе 6,67%С. Среднее содержание углерода в перлите – 0,8%С, а сталь с целиком перлитной структурой, содержащая 0,8% углерода, называется эвтектоидной. При содержании углерода менее 0,8% сталь состоит из перлита и феррита, если углерода более 0,8% – из перлита и, в соответствии с диаграммой состояния железо – углерод.

При металлографическом исследовании изучается срез поверхности металла (металлографический шлиф), который подвергается шлифовке, полировке и химическому травлению специально подобранными реактивами. Химическая активность цементита больше, чем феррита, поэтому под микроскопом сильно протравленные участки цементита имеют черный цвет, а участки феррита сохраняют светлый цвет.

Перлит обычно имеет пластинчатую структуру, каждое зерно перлита состоит из параллельных пластинок феррита и цементита шириной в десятые доли мкм. Длина пластинок соответствует размеру зерен металла, и пластинки идут от одной границы зерна к другой. Если такая объемная пластинчатая структура пересекается плоскостью шлифа и подвергается травлению, то на ее поверхности возникает полосчатая структура из светлых полосок феррита и тонких полосок цементита. При различных термообработках ширина полосок (межпластиночное расстояние) может быть различным, ширина полосок цементита в 7 раз меньше, чем полосок феррита. При длительной выдержке при высоких температурах зерна феррита и цементита могут переходить из пластинчатой формы в округлую, и на металлографическом шлифе наблюдаются мелкие, темные, округлые зерна цементита на фоне крупных зерен феррита.

Перлит – продукт эвтектоидного превращения высокотемпературной фазы – аустенита при термической обработке сплавов. Аустенит при охлаждении при температуре 723° С распадается на феррит и цементит. Перлитное превращение всегда начинается на границах зерен аустенита. Чтобы возникли частицы новой фазы, нужно создать зоны пониженной и повышенной концентрации углерода. Исходный аустенит содержит 0,8% углерода, а в результате превращения образуется феррит, практически не содержащий углерода, и цементит с 6,67% углерода. Для объяснения этих процессов предложен флуктуационный механизм, согласно которому атомы углерода с большой диффузионной подвижностью при высоких температурах, могут создавать зоны с повышенной концентрацией углерода. Этот процесс является энергетически выгодным, и зародыш цементита вырастает до критического размера.

Похожие публикации